1/4m^2-5=0

Simple and best practice solution for 1/4m^2-5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4m^2-5=0 equation:



1/4m^2-5=0
Domain of the equation: 4m^2!=0
m^2!=0/4
m^2!=√0
m!=0
m∈R
We multiply all the terms by the denominator
-5*4m^2+1=0
Wy multiply elements
-20m^2+1=0
a = -20; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-20)·1
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-20}=\frac{0-4\sqrt{5}}{-40} =-\frac{4\sqrt{5}}{-40} =-\frac{\sqrt{5}}{-10} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-20}=\frac{0+4\sqrt{5}}{-40} =\frac{4\sqrt{5}}{-40} =\frac{\sqrt{5}}{-10} $

See similar equations:

| 200+2x^2=40x | | (7x-3)+(2x-6)=180 | | 13=6x−8 | | 10=-6w+4(w+3) | | 4=-d/2 | | 7=7-4x | | x-5(-4)=8 | | 20+3z=53 | | 12x+18=−18 | | 4=t/5+6 | | 2(2x+5)-x=-26 | | -7-5y=8 | | -6+2k=k | | 3y=4–7 | | 14=-8v+3(v-2) | | 6=9+p/3 | | -6(8+4n)=2(1-7n) | | 25+x/10=24 | | 4(3+y)=6+3(y+2) | | 25x^+9=0 | | -8=w/2-4 | | 2b+10(b-3)=3(b+2)+2b | | A=9+4b | | 8x-40+4x=44 | | X+(x+1)^2=109 | | -2(x-6)=3(x-4)-x | | (7x+1/2)=0 | | j-7=16 | | 5/4-1=1+5/4x | | x​2​​−16x+68=0 | | -2w+6=4w-8 | | 7b-3=4b-12 |

Equations solver categories